

Drinking water : Systems & Quality

March 13th 2015 Paulien Rutten

Drinking water

- 1. Importance of drinking water hygiene
- 2. Risk of pollution
- 3. Lay-out of the drinking water system
- 4. How to prevent and solve water hygiene issues?

Water as main nutrient

- Pigs drink much more than they eat
- Drinking water should be:
 - Tasteful
 - Available
 - Safe for animals
 - Safe for animal products: meat.
- Heat stress, drink to cool body
- During illness lower feed intake, but keep drinking!

Consequences of compromising on water requirements

- Lower water intake
 - Lower feed intake

Lower health status

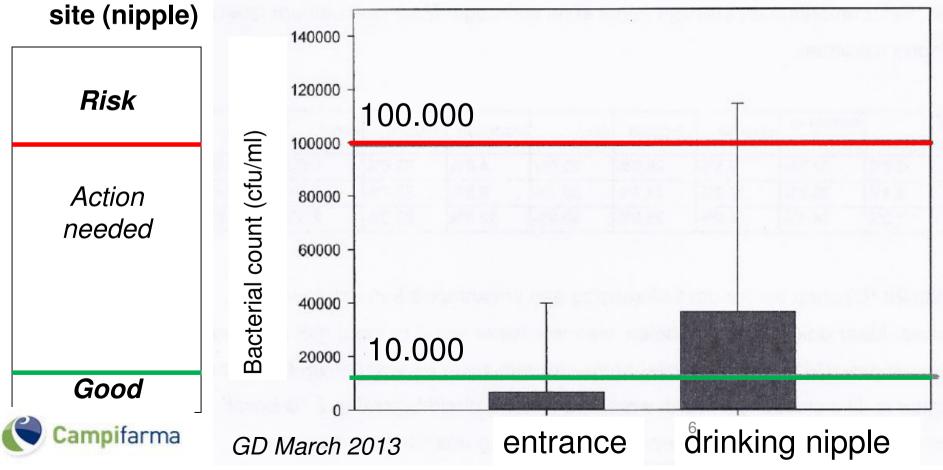
Lower technical performance

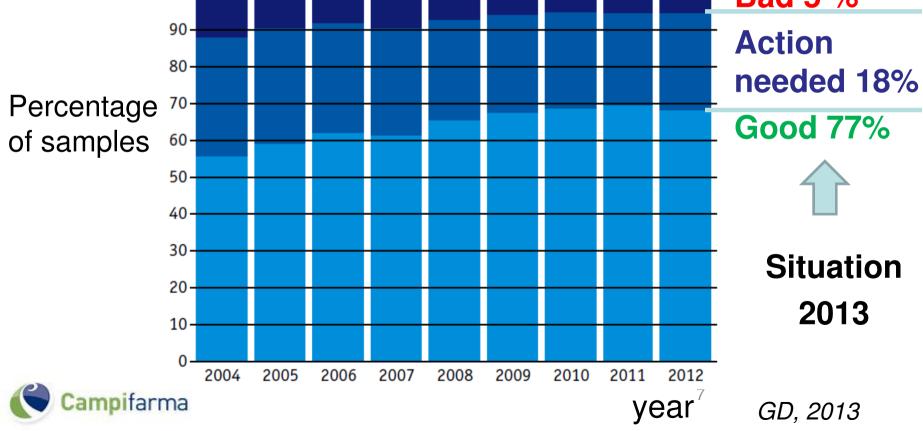
- Blockage, damaged equipment and pressure loss
- Continuous challenges on immune system
- Less energy spent for growth or reproduction
- More intestinal health issues
- Reduced effect of medication and supplements
- Campifarma

 Lower use of antibiotics

Water requirements

• What do you prefer?




Water quality – entrance vs nipple

Bacterial pollution in water at house entrance versus water at drinking

Big concerns about water quality at drinking point Bad 5 % Action needed 189

What is drinking water hygiene?

Managing quality of the water:

- Chemical
 - iron, manganese, ammonium
 - pH, hardness
- Microbial
 - > Bacteria, yeast, mould

Drinking water that doesn't meet requirements = risk for animals!

Standars for chemical quality

	Element	mg / litre	
	Hardness (Ca&Mg), dH	< 20	
	рН	< 8,5	
	Iron, Fe	< 0,5	
	Manganese, Mn	< 1	
	Nitrite, NO ₂	< 0,1	
	Nitrate, NO ₃	< 100	
	Chloride, Cl	< 250	
	Sodium, Na	< 400	<i>Reference: GD in IKB 2015;</i>
	Sulfate, SO ₄	< 150	"Drinking water standards for
Campi	farma Hydrogen Sulfide, H ₂ S	0	standards for pigs"

Chemical quality – dH & pH

- General hardness:
 - 6-12° D = target
 - > 20° D = action needed
- Temporary hardness
 - > 350 ppm CaCO₃ = action needed

- High pH limits effect of products in water
 - PH > 8.0, decreased efficacy of vaccines and antibiotics
 - PH > 7.0, dramatically decrease in activity of chlorine

Chemical quality – Fe & Mn

Iron > 2.5 mg/litre

- Sediment Fe and Mn: blockage
- Bad flavour: decreased water intake
- Visual inspection could be misleading
 - > After contact O₂ : 1-2 hours

Manganese > 0.05 mg/litre

- Dark slimy sedimentation
- Visual inspection could be misleading
 - > After contact O₂ : 10-20 hours

m.

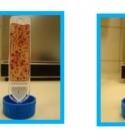
Chemical quality - Ammonia Chemical and Microbiological pollution

Ammonia in water indicator for bacterial pollution

= link between chemical and microbial parameters. (WHO 2003 - Ammonia in drinking-water)

In ditch-water bacteria can transform Ammonia into nitrite (NO2) Nitrite is toxic and lead to mortality in pigs.

- dead ends in system
- part of system not in use
- Header tanks

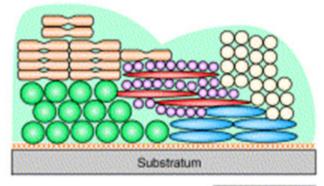

Campifarma

(GD 2013)

Microbiological quality

ТВС	CFU/ml	< 10.000	10.000-100.000	>100.00
	Action	Accepted	Find out about cause of pollution Take control measures	Rejected
E.coli	CFU/ml	< 10	10-100	>100
	Action	Accepted	Find out about cause of pollution Take control measures	Rejected
Campifarma			13	

What is biofilm?


- Quality at the source ≠ drinking point
- Biofilm definition
- Structure
 - Exopolymers
 - Glycoproteins
 - Polysaccharides (glycans)
- Muti layer & multi species

Difficult to break down

Mature multi-species biofilm

TRENDS in Microbiology

¹⁴ *Richard et al., 2003*

Risk of Biofilm

Why risk for animal health?

> Bacterial infection & immunological challenge

> Mycotoxin production by mo's in Biofilm

> antibiotics kill bacteria in biofilm, but yeast and mould survive and produce toxins

> Lower effect of vaccine, medication, additives

Not complete dosage

Antibiotic resistance

Released over a longer period of time

Drinking water

- 1. Importance of drinking water hygiene
- 2. Risk of pollution
- 3. Lay-out of the drinking water system
- 4. How to prevent and solve water hygiene issues?

Role of system lay-out

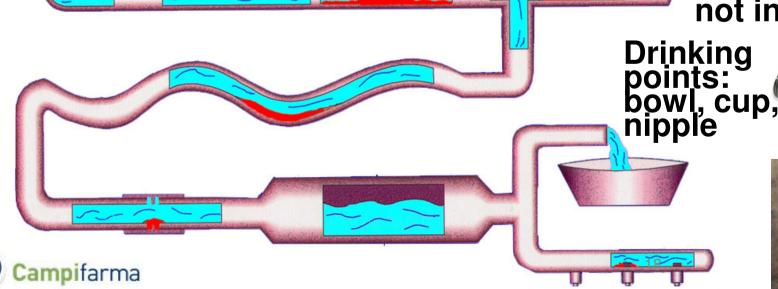
Water safety

- Dead ends/ not in use
- Drinking points
- Diameter pipeline
- Water pressure
- Materials used (lines)
- Tanks
- Dosage pump

Water availability

 Capacity of drinking points / nipples

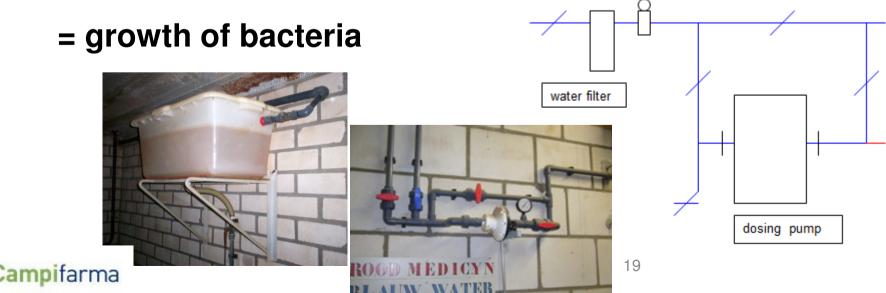
Peak consumption



Diameter pipeline

- Small: 20 mm in the unit.
- Fast transport of supplements
- Prevent rise in temperature

Dead ends/ not in use



Water pressure

- Use pressure reducers instead of 'float tanks'
- Min 3 bar: Make sure no oxygen (and dirt) can enter the system at the drinking points

pressure reducer

Material and Biofilm formation

- Advice:
- High density polyethylene HD80/100
- Not advise:

Low density polyethylene

porous for gasses e.g. CO₂ and Ammonia stimulates growth of bacteria

Fig.1. Tested pipe tube products Tsventanova and Hoekstra, 2008

System lay-out Water safety at risk by using tanks

- Continuous source of pollution
 - Re-contamination system
- Float tank
 - use pressure reducers instead
- Medication tank

ampifarma

- Clean also during cycle
- Accurate dosage of supplements

is difficult (organic acids)

System lay-out

Water safety is also water treatment

- Frequent cleaning
- Correct use of desinfectants
- Accurate use of drinking water additives

All can be achieved by using dosing pump

System lay-out

Mechanic and electric dosage systems

Electric

- Precise at low water flow
- Equal dosage
- Acid resistant
- Long life span
- Air release for hydrogen peroxide
 Campifarma

Mechanic

- Cheaper
- Shorter life span
- Less precise at low water flow
- Not always acid resistant
- Not suitable for low dosage₂₃

ters

Role of system lay-out

Water availability

- Capacity of drinking points/nipples
 - Piglets: 500 ml / minute
 - Finishers: 1,0 litre / minute
 - Lactating sows: 2,5 litre / minute
- Peak in consumption
 - Not only daily consumption, peak !!!

System lay-out

Mistakes often seen:

- Insufficient capacity
- No adjustments in water treatment installation after increasing number of animals
- Insufficient water quality during peaks in water consumption
- Incorrect flushing set up-of the water treatment installation
- Lack of maintenance & monitoring (by analysis, testing equipment and use of water filters)
 - High hardness level

Drinking water

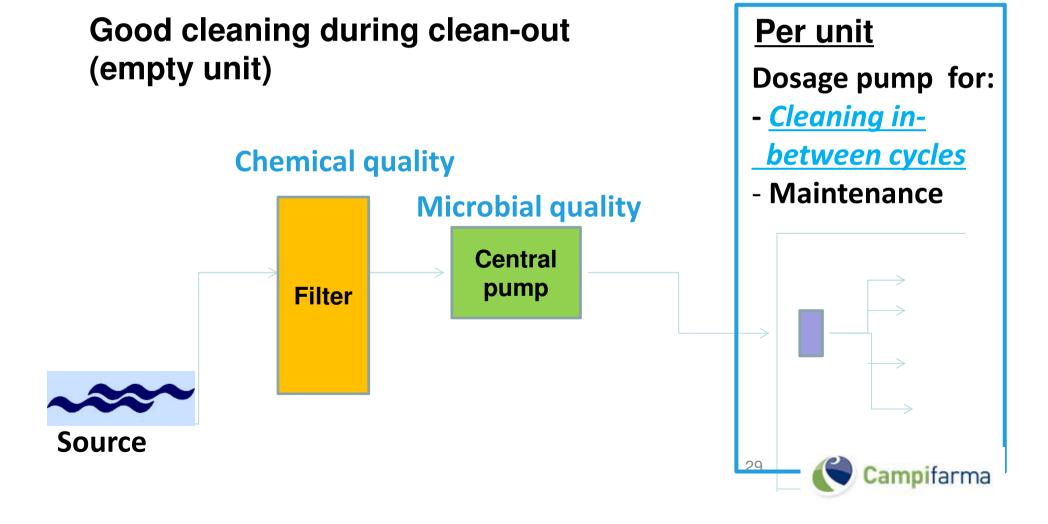
- 1. Importance of drinking water hygiene
- 2. Risk of pollution
- 3. Lay-out of the drinking water system

4. How to prevent & solve water hygiene issues?

How to prevent & solve water hygiene issues?

- Safe incoming water
- Good cleaning during clean-out
- Maintenance during cycle
- Accurate dosing equipment
- Correct use of additives





How to prevent & solve water hygiene issues?

Water treatment

Choice of cleaning product

Corrosiveness	dissolved Zn, mg/l
Hydrogen peroxide + peracetic acid	2100
Chlorine	1200
Hydrogen peroxide not stabilized	1100
Hydrogen peroxide + silver complex	99

рΗ

Chlorine treatment is very **<u>pH sensitive</u>**:

pH > 7 immediate strong decrease in efficacy

pH 7: still 77% activity => pH 8: only 22% activity

Hydrogen peroxide

Advantages of H_2O_2 for cleaning in between cycles:

- Biofilm structure easily broken down because of specific action against sugar structures/polypeptides
- Auto-Redox reaction: $H_2O_2 \rightarrow O_2 + H_2O_2$
- Pressure in drinking lines O₂ production
- Water pipes are scrubbed by O₂ bubbles
- Strong antibacterial effect
- No residues: animals & environment

Cleaning procedures H₂O₂

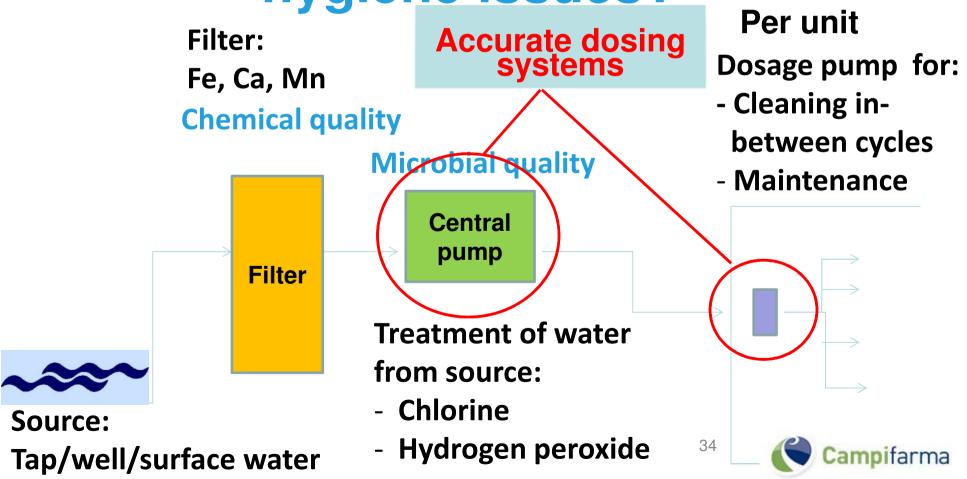
- 1-5%, minimum 24 hours
- Dosage depends on:
 - > Maximum dosage pump settings
 - Frequency of cleaning moments
 - Time available for cleaning
- Air release during cleaning
- Flush system after cleaning
- 1 A) stabilized H₂O₂

1 B) non-stabilized H₂O₂

2 A) Vinegar

2 B) stabilized H₂O₂

Maintenance during cycle


Before <u>and</u> after period of additives in water

Day	Product in drinking water	Extra cleaning action
Monday	Maintenance dosage of cleaning product	Flushing lines
Tuesday	Antibiotic or nutritional supplement	
Wednesday	Antibiotic or nutritional supplement	
Thursday	Antibiotic or nutritional supplement	
Friday	Maintenance dosage of cleaning product	Flushing lines

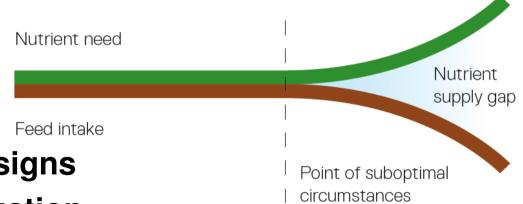
How to prevent & solve water hygiene issues?

Good system and water quality – What's next?

Nutritional supplements via drinking water

- Advantages for animal health and performance
- Acidification
- Critical points for successful administration

Drinking water supplementation

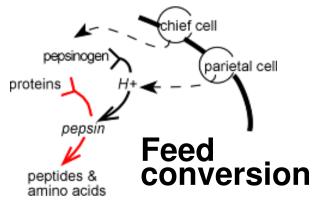

- Pigs are more easy to reach via water than feed
- Stress or disease: nutrient requirement

 \downarrow feed intake

- 'Nutrient Supply Gap' => disruption intestinal health
- Pigs keep drinking, so faster solved via water!
- Flexible:
 - Start directly at first signs
 - Adjust dosage to situation
 - Period of administration by farmer & veterinarian

Targeted administration per pig unit

Acidification


Source ± pH 8 Dosage farm specific (buffering elements)

Acidifier in stock solution Pathogens don't survive pH < 4

Drinking water Target pH 3.8

Critical points for successful administration of supplements

- 1. Good water quality
- 2. Correct installation of the drinking system
- 3. Appropriate dosing equipment
- 4. Knowledge about water intake
- 5. Good solubility & accurate use of additives
- 6. Correct cleaning procedures

Conclusion

Drinking water hygiene =

Key to success

for animal health and performance

Thank you for your attention!

Paulien Rutten & team Kanters & team Campifarma

Your take home message

Veterinarian plays as crucial role

in

emphasizing the importance of drinking water hygiene,

to

guarantee effectiveness of medication and supplements

and finally

improve animal health

Thank you for your attention!

Team Kanters Special Products

Healthy Animals, Healthy Farm